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Abstract

The gquestios of the effect of asyaumetries in gravitational collapse ie fnvestigaied by
considerations of test clectromagnetic felds in an extendsd Relssner- Nordstrdm back-
ground. It i found, with the aid of romputer caleulations, that instabilities in the test
field arise at the inner (Cauchy or anti-event) horizon, though uot at ile duier {eventy
horizon. Thus it is reasonable to infer that in the full coupled Einstein-Maxwell theory
the inner horizon will not survive as a non-singular hypersurface when asymmetriv
nerturbations are present, but will instead become a space-time curvature singularity.

"The gravitationa! collapse of a star which is too massive to form a white
dwarf or nentron star preseats & now familiar siciure, If spherical symmets
is assumed, then collapse through 2 black hole 16 2 cenira! space-time
singularity at which curvaiures mount to infinity is implied by gensral
telativity (Penrose, 1969a). 1t is also known from generaltheorems (Hawking
& Penrose, 1970) that even when spherica! svmmetry is not assummed, a
space-time singularity must nevertheless still arise whenever trapped
surfaces occur. However, the nature and location of these singularities Is
left completely open by the theorems. According to a frequently stated
conjecture {Carter, 1971 ; Israel, 1967, 1968; Hawking, 1972}, the exterpal
field of the black hole which resuits from a gravitational collapse should
approach that of a Kerr—~Newman (Kerr, 1963; Boyver & Lindquist, 1967;
Newman ef ¢l., 1965} solution of the Einstein-Maxwell equations, charace
terized by just three pdrameters: mass m, charge e, and angular mementum
a. There is however no reason to believe that the internal field near toe
{ring) singularity of these solutions should be an accurate representation
of the physical space-time resulting from a realistic collapse. Indeed, the
presence of closed timelike curves near the singularities (Carter, 1968)
would seem to argue against any too close relation between the models and
physical reality.

The Kerr-Newman solutions with m> 4/(@*+ e®) >0 possess the
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characteristic feature that there is not only an outer (sbsolute} event
horizon (surface of the black hole) but also an inner horizon (the anti-event
horizon} {Penrose, 1969b) which is a Cauchy horizon (Hawking, 1966, 1567
“for any appropriate initial data hypersurface used to set up the problem.
QOur contention in this note is that if the initial data is generically perturbed
then the Cauchy horizon dois not survive as a non-singular hypersurface,
Ji is strongly implied that instead, genuine space-time singularitics will
appear along the region which would otherwise have been the Cauchy
horizon.

We copsider here only a special case, namely that when the angular
‘momentum IS zero, but mass and charge parameters m and ¢ are both
present (with m > [¢]). We add an electromagnetic test field a= a perturba-
tion and show (by computer calculation) that singularities in the electro-
magnetic field occuar at the Cauchy horizon. It is reasonable to infer that
-when the gravitational-electromagaetic coupling is 2added, ihen the Cauchy
horizon would degenerate into a curvature singularity.

Our unperturbed space-time can be described by the BEeissner—Nord-
strom metric, given in the formt

a-— - 2mfr + ey de? — (1 — 2mfr + {r*y* a’r
— ¢ {5 sin2 B i) )]

_where r, 1, 8. ¢ are the zadial, time, and $wo angular coordinates respec-
tively. The coommate s*nguiamies due to the distinot zevos vy, ro{r, > r)
of (1— 2mfr+ &jr?), corresponding to the event horizon and C‘aaf:hy
horizon rtespectively, divide the manifold covered by this coa‘:ﬁmazﬁ
system into the three regions r>r,, r. <7 <r, and r <r_. Each of thes
can be parametrised by the retarded and advanced null coordinates u, ¢
given by '

_fe~Jry T riandr<r
u“{t-é—f(r), L P <P,

t+f(), r>r.andr<r.
D=
—t -+ f(r), r.<r<r,

where f(r} = | (1 — 2m/r + */r*)~'dr and u, v have range (—=,») in each
of the three regions. The parts of the manifold can be représented by the
- ‘blocks’ of Fig. 1 for constant values of the aagular coordinates. The edges
of the blecks are identified asindicated. To the three regions 4, B, C thcre
correspond further regions 4, B’, C” obtained by appb*ing the trans-
formation w-»—u, v~»~v which reverses the light cone structure. A
maximal analytic extension] of the Reissner~Nordstrém solution may then

+ See, for example, C. Maller (1952). The Theory of Relativity. Clarendon Press,
Oxford. .

1 This procedure is due to J. C. Graves and D. R. Brill (1960). Physical Review, 120,
1407
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be constructed by piecing together copies of the six blocks in an analyiic
fashion <o that each overlapping edge is covered by either a (1,7} o7 {7}
system of coordinates {with the exception of the corners of each block).
The resvlting ‘ladder’ shown in Fig. 2 is infinitely extendible in both’
directions.

In this spare-iime the adge of s feely collansing body is represented by
a foture-directed timelike geodesic which passes {iva the exterior region
 through B to the interior region 4. The naiure of ihe analyviic extension
aliows us to conternplate the possibility Penrose, 1968} of an observe:
following in the wake of the coilapsing body from C io B, then avoiding

Path of
collapsing
body
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region A by pursuing instead 2z (necessarily) non-geodesic trajectory

hyough r=r_ into region 4', whose history it not determined by data
specified in C. The observer is not however assured of a smooth passage
over the Cauchy horizon r=7_ between B and A'. In the instant before
erossing he is in 2 position to observe the entire history of region Cand it
1ay be that in conseguence of receiving the full (back-scattered) effocts of
ihe ouigoing radiation field from € hie will cacounter unbounded curvatures
in the vicinity of r-r_. If arbitrary smooth mitial data for our electro-
magnetic test field given on 2 spacelike hypersurface in € {ail to determine
limiting values as r=r_ is approached, things leok bad for our observer.
If such limits are forthcoming, he appears o have chances of getfing

s !

rer, R=0, u=c o, Rell, g |

T

'/ r=em, R=0, u=-02
T

Figure 3.

‘through. We proceed to set up the necessary apparatus for making such
an investigation. : X

After first performing the conformal transformation ds -»r~lds we
further transform the metric, leaving the angular coordinates unchanged
and defining new coordinates »” and R by

o = A P r<w
e, O<r<r,
r.—r P F.

Re=-Zr — Og<ra<e  where d = ——x" 3
Ad'rr,’ = 2r,2 )
These coovdinates cover the three regions C, B, and 4'. The outgoing
null directions are given by " = constant, while R is an affing-parameter
along those directions, i.e. ¥5u'V, R = L. Dropping the prime on u, Fig. 3
shows the disposition of the coordinate curves. The metric is now given by

ds? = glu, By di® -} 2du dR — (d8* + sin? 6 4§ 4

)]
s
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where

0 R) = B3y - 2+ H1 — @) G — DuR + Jo(l — % R
and

ﬁw-:—;:, Ogu<ct

&

u = 0 gives the Schwarzschild limiting case.

Seeking to employ the NMewman-Penrose spin cocfficient Tormalism
(Newman & Penrose, 1962) we put [* = Yoy, tangent to the outgoing null
hypersurfaces, and define three oiher vertors n*, m®, #° 10 cornpleie 2 unli
tetrad satisfying the conditions that #° shall be a real future-pointing nul}
vector iying in the plane spanned by V?u and Y’“R " and s conjpugate

#°* shall be complex null vectors, and I,n* = —m 7" = 1, [m* = n 5" = 0.
‘Wﬂ iake

w= Ve R 4 %oy, R} Veu
&)

m*fawm—;-e T isin Ve @)
VZ
Using this tetrad, nine of the tweive spin coefficients arg zero. wae excep-
fions being

w = " 7V by — 7570 V) = m‘;
B 3 1V, I, it V) = 20 ®
%( ] k g, 2\/2
y= YV, L i Vym) = L 28
3 b*a 11, 4(;?

where gy, R) is given by (4).
Defining the three complex components of the clectromagnetic feld
tensor F,, by

¢0=Fabl°mb
951 =%Fab<*mnb‘*"ﬁﬂmf} (?)
gﬁ;mf,ﬁiﬁ"n”

and writing D=1°V_, . 4=V, §=m"V,, the spin coefficient form of
Maxwell's equations is

Dé, — 5o = -2tcbo v
Dfﬁz - 5451 il

86— Ao =270 ®
5 — Ay = —2Bb;
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We next introduce (Penrose, 1967; Newman & Penrnce, 1668) the
angular differential operator 5. A quaﬁmy 1 is said to have spin we;ght k]
if under a transformation »" —> ¢ p® it transforms as § —> ™y It is
teadily seen Trom (7) that e, ¢4, ¢, have spin weights 1, 0 and —1 respec-
tively; © is then defined for a quantity » of spin weight 5 by the equation

% a V 2 3
n ~—in0y {3+ s = simn) ®
“The operator § is similarly defined:;
. g i 3Y,.. .
6q=~(mn9)*{—a-@~m55} {(sin B} 0y
5 and {1D) reduce to

Beg s n /D B4 s COL G I
By =—4/28n— 5500t P an

Substituting %, ¢y, &5 in turn for 3 in (11) and priting © piel 10 the
ccrrcspondmg spin weight, we see that Mazwell’s equations f?ﬁ may b
put in the form

D@i + 5 1/2 quﬂ e 9
D¢, + ﬁéﬁéx =0 .
‘ i 12y
4 '2?)9504*;753@ =0
Ay *“‘175 B¢y =
We define the quantities
Ho=[1%indodbsin0dp, m~-1,0,1 (3)

where , ¥, is 2 spin s spherical harmonic given by substituting for sand{
in the defining equations

G—one
[m ‘("}’YLH,, 0<s<?

{+ 53!

JYi ) 2
("1)‘{(1 S}g} 5 ‘l‘ﬁf ~l<s S UR

s O

P
-
&

:Yl.m = (."l)m..‘ -1 YI, -m
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where 1==0, 1,..; m=-J,.., I; and ¥, , are the erﬁmsry sphmca!
barmonics. ?"r noie the ps‘()p"riv that if p i3 a guantity of spin weight
I+ 1 then

j o1, B pdfsingdg = ¢ s
Dropping the subscript from #7 and using (11}, (12} and (35}, together with
the three commutator relations for scalars
(4D~ DAy ¢ =204
(3D~ D5)¢=8 (16)
(58— 80) ¢ = 256
where in the last equation ¢ is considered 1o be of spin weight &, we derive
a linear homogenecus second-order partial differential equation iz & of
hyperbolic type:
LH]={4 -4 D+{1-2D)}H=0 (an
Sabstituting for 4, D, y, we have
N tes B LA LA L
2}~ \PudR 23R’ BRER

1 HE
{x 251{1} H=0  (18)

Qr
PH 12
IR IR (g +H=0

where g(u, R) is given by (4).
The canonical form of (i§),

& 0 )
{Eﬁév A(u,v)—a——v-i-B(u,v)}H—~0

requires for its explicit description the inverse (for R) of the transformation
- 7
_ Repr + (1~ uRj

(2 — R 2+ (1 — Y uR)E~H

which is not forthcoming. Nor does Riemann’s method of solution of the

inftial value problem for pamal differential equations of hyperbolic type
assist us since the adjoint equation to (18)

P
BuoR BR”

(19)

T} = +J=0 (20)

is related to (18) by

;a,,,.?*m z’f m} @n
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ie i J= X is a solution of #*[F] =0 then K = 0> X/o#" is a solution of
FiH]=0. Finding exaci scluiions of {20), which must be achieved n
order to construct 2 Green’s function, is consequentiy squivalent to finding

‘them for (18), and excepting une trivial case no exact solutions of either
‘have been found.

“We note that atr = gwen by uR = 2/l — 1) in our presert coardume
system, 1~ 3P g/OR® = G and hence {18} reduces o
(£ m0- o) o
giving P
o~ £ }
5, (R DHy=0 2

Thus from {13) we have the integral conéervation law
%jIYIQERZDQSQdBSingd(ﬁ“—:G, (23)

the integration %eiﬁgmmfed ot over {he sphere at mﬁn!w Thxs mtegral

1967 Newr:.aﬁ & Penrose, 196 )
in the apparent absence of explicit analytic solutions of {18) nomerical
solutions have been sought by the uwsual method for hyperbeliv partial
differential equations (Smith, 1965} The characieristic directions {pull
lines) are given by
du~1{

24
R 1806 R) =0
and putting
_oH _8H o (1% .\
P_"éu-’ q”'a'z ‘ and f(l!,R q:E} qaR+ITI(2 3R2 I)
the differential relationships
dp=1}gdg+fdR
dg=fdu 23

represent (18) aleng the respective characteristics. We also have along
du =0,
dH =qdR {26)

Successive approximations to H, p, g at any point X of the characieristic
grid in terms of their values at immediately preceding grid points on the
characteristics through X are obtained by Iterative use of the finite dif-
ference equivalents of (25) and (26).7If values of p are not required the first
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- pguation in {25) becomes redundant since p appears neither in the second

of {25 nor in 26,

The solution of the second equation in (24) is given by {19). The R-
coordinate of 2 point on the characteristic grid given by specified values of
u, v coald therefore be found using Mewton’s method to solve (19) to any
desired accuracy, but this is a lengthy procedure to undertake for every
poini of the grid and is consequently employed only at points on the initial
hypersurface. Eisewhere a Runge-Kutta approximationt using (24) gives.
the value: of R at successive grid points on each vcharacteristic. When
#=0 (19) becomes »/R = constant, and by scaling v so that this constant
is unity we obtain 3 direct check on the accuracy of the apa;mmm@n for
Rinthe regionu < 0.

Initial values of H, g are specified on a pair of nuoll lings v =1y, v=19,
{1y, <0, 1, > 0), the initial value of p if required being then uniguely deter-
mined on these characteristics. For the computation] it is necessary io
thoose » nwmerical value for the ratio a=r_/r, and we put x=3%, for
which the maximum divergence of the v-characteristics occurs on ¥ =0.
Adong v = constant, ARjd has & maximum and minimum of order #? on
either side of =0 'ﬂie aumtber. of grid poanis reguired to furnish a
geascuably accuraie solution therefore riscs sharply a3 v incicascs placing
practical limits on the extent of the solytion domain in this direction
Within these bounds results of interest have been ohtained.

Several functions have been used as initial data. In particular setting
tp = 0 and choosing #, p, g to be zero on # = gy, the £ initial foncton

[Ra—RP, O<R<a
Ho= 6, a<R< 2 @n
(e~ Dy
for u = 1, has"been tried with various values-of 4, and 4. Profiles along
u=constant of thé¢ solution obtainad, from (27) with u, =~100 and
@ =0-0525 are-shown in Fig. 5 while crass-sections aiong v = constant
are displayed in Fig. 6. Figure 4 shows the relative disposition of the ¥~ and
v-characteristics employed drawn to the same scale. These graphs show .
featurcs typical of all the numerical solutions investigated.

By choosing the initial value of DH on the boundary to be zero we are-
assured by (22) of its remaining zero all the way up r = ». Graphs of H
for any constant negative value of u are asymptozically flat in conseguence.
As u increases from —100 to 0 the number of oscillations of the solution
for u=constant goes up. remaining finite for any particular v <0. On
g = 0 we apparently have an unbounded number of well-damped oscilla-
tions, and as we enter the region u > 0 the amplitude of thess oscillations
ris:&s sharply and they appear to diverge more and more viclently as

1‘ See, for example, P. K. Hem’xm (1968). Discrere Variable Me:hods in Ordingry -
Differeniial Equations. Wiley, New York.
1 All programs were run on the University of London’s Atlas computer.
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further imorcasce. §4 can be seen in graphs {e) and (f) of Fig. 5 that these
unstable escillaticns sov situated ‘very close’ 1o the Cauchy horizon r=r_
in terms of the affine parameicy &

The solution for » = consiant 1o the !2ft of any neighbourhood of u =0
appears to settle down rapidly as v is increased while the number of oscilla-
tions of decreasing amplitude near u = O continues 1o vias. It spems reason-
alile to extrapolate from this fo the picture at ¢ = « for ¥ < © featuning an

toe- {z} u=-100 (b} u=-8
10r

b

\\_____

050.6 075
Tt 1+ 10 100 o

0.1

801

2

4 Inigal function: ) . .
b HE[108XR2(D.0525-R)?, 0<R<0.0525
- 10 elsewhere §

ol
Figure 5z, b,
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infinite number of oscillations, the amplitude of these tending to zero as
1 <> 0. For u > 0 however the solution curve waggles, showing no sign of
‘tending to any limit ag p rises, '
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The numerical proceduse is a stable one, alterations of the step lengths in
either direciion producing oo significant deviaiion from the graphs shown.
The numerical evidence therefore points to 2 singularity in the test field
along v =, despite the fact that the solution appears to Kave the limiting

450 BOGER PENROSE

walue zero as ¥ -» B and o -+ = along any curve for which 2 < 0.
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1t is to be expected from analytical considerations « i’ the characteristic
initial value problem that the specification of unrestricted null charac-
teristic data will in general produce a shock-wam upt b nitial hypersurfawe

ey 2 3 sk

amﬂg wmui the ficld tluliﬁ;\ GhS arg vwm&u, ic. a shest of ch I&TEE. This will
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be so valess subsidiary conditions are impesed {namely the vanisb'mg of
certain integrals along the generators of the initia! characteristic surface)
in order 1o ensure that the sheet of charge is absent (the shock-wave cannot
be directly ascerfained from the numerical solution; the apparent nitial
se:venty of the graphs in Fig. 6 is partly dug to the scale employad),

¥t is not to be expecied ihat the presence of such a shosk-wave should

affect our conclusions, since it is only the effect of back-seattering from the

wave which enters the vegion v - § in which we are mainly interested,
However, to make sure of this we ran programs with suitable alternative-
initial dzta. In the first instance the effect of such # shock-wave can be
substantially fessened and possibly even removed by balancing the indtial
“hump” with another of equal size and opposite sign placed Further up the
hypersurface. The shock-wave can presumably be further reduced by
separating two such positive humps with a larger negative hmrp 50 that a
batance is again achieved (in the first case jg:;" ngi’l” = {; in the second
fomz HodR = {723 198/26),. dR=0). 1t can also be removed from
u =y, alicgether by sy@cifymg non-7ero datz only along v=10p, (W< 0},
“The shock-wave then resides further alon g the Bypereurface v = vy, There
it e reason io believe that the presence of this shock-ewve should affect
e feldatv> o, bgu<o,

Neither in these cases nor in any others considered has there been any
major gualitative difference from the results displaved here. Fach set of
initial data produces & - markedly siable solution while u <0 followed by
immediate sigas of inssability on crossing into u >0, It therefore seems
likely that the field singularity is 2 property of the partial differential
equation {18) rather than auny pﬁmcui‘u initial fonction and will con-
sequently occur for generic cases of the fatter.

It should be pomted out that the situation we tonsider of placing a rest
solution of Maswell’s equations on a background space-time which satisfies
the Einstein-Maxwell equations is not cqmva}"at to CL\Eb;éefIBg small
{electromagnetic) perturb bation of the Einstein-Maxwell equations. This is
because cross-terms arise in the contribution of the Maxwell feld to the
background space-time via the  energy-momentum tensor, producing
changes in the background metric of the same order as that of the initial
perturbation.§-A fuil treatment of such a perturbation would lead to far
more complex equaticns than those treated here, but we do not believe
that the results would be substantially affected. 4. perturbation analvsis
cannot io any case give-a definitive answer to the problem we consider,
since the non-linear effects would ultimately have to be brought in.

From this connection of inferences we conclude that th g*nj-"-:ted
journey of our h; jpothetzﬂal observer through r = r_ looks lizblz wo o prove
dangerous undertaking, for the likelihood is that the Cauchy horizon is
unstable and that unboundsd curvatures will be met in its immediat
neighbourhood as soon as the caupﬂnﬂ effect of the'field back on the spa,e&
time is taken into account.

Y x o W 23 A Toom smmlcuidon o ﬁh:n Azt b 3
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